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The cross-stream migration of a deformable drop in two-dimensional Hagen–Poiseuille
flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds
number (< 1), the motion of the drop depends strongly on the ratio of the viscosity
of the drop fluid to the viscosity of the suspending fluid. For viscosity ratio 0.125 a
drop moves toward the centre of the channel, while for ratio 1.0 it moves away from
the centre until halted by wall repulsion. The rate of migration increases with the
deformability of the drop. At higher Reynolds numbers (5–50), the drop either moves
to an equilibrium lateral position about halfway between the centreline and the wall –
according to the so-called Segre–Silberberg effect or it undergoes oscillatory motion.
The steady-state position depends only weakly on the various physical parameters of
the flow, but the length of the transient oscillations increases as the Reynolds number
is raised, or the density of the drop is increased, or the viscosity of the drop is de-
creased. Once the Reynolds number is high enough, the oscillations appear to persist
forever and no steady state is observed. The numerical results are in good agreement
with experimental observations, especially for drops that reach a steady-state lateral
position. Most of the simulations assume that the flow is two-dimensional. A few
simulations of three-dimensional flows for a modest Reynolds number (Re = 10), and
a small computational domain, confirm the behaviour seen in two dimensions. The
equilibrium position of the three-dimensional drop is close to that predicted in the
simulations of two-dimensional flow.

1. Introduction
Drops suspended in another fluid in channel flow are encountered in a wide variety

of technologically important processes such as liquid–liquid extraction and the flow
of oil and water through pipelines (see Schramm 1992; Berkman & Egloff 1941, and
Joseph & Renardy 1992). Because the distribution of drops through the cross-section
of the channel determines the flow rate, for a given pressure drop, determining the
lateral migration of the drops and their final equilibrium position is of particular
interest. Several investigators have examined the problem, but most focused on flow
at Reynolds number that is either zero or O(1). Here we examine the behaviour over
a larger range of Reynolds numbers. These conditions are particularly relevant to
flow in micro-gravity, where dispersed flow is observed over a much larger flow rate
range than under terrestrial conditions, and the drops can be large.
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The review article by Brenner (1966) discusses early experimental studies. The
migration of neutrally buoyant solid particles and drops was studied by Goldsmith
& Mason (1961, 1962) in tube flow, at near-zero Reynolds number. They did not
observe lateral migration for solid spheres moving over 50 000 tube radii. Experiments
conducted by Karnis, Goldsmith & Mason (1966a) on a suspension of rigid particles
at small Reynolds numbers in a tube flow did not show any concentration gradient
across the tube cross-section in the range of volume fractions examined either. In
contrast to solid particles, highly deformable liquid drops with viscosity ratios ranging
from 0.0002 to 4.8 migrate toward the tube axis at a rate that increases with the flow
rate and drop size. Nearly spherical drops at low flow rates migrate away from the
tube wall, although they do not always reach the tube axis. Similar experiments were
conducted by Karnis & Mason (1967) who observed that liquid drops with a small
viscosity ratio (0.0002–0.02) migrate toward the tube centre and reach the tube axis
at small Reynolds numbers. Hiller & Kowalewski (1987) conducted experiments on
a very dilute suspension of droplets in a plane Poiseuille flow in the limit of creeping
flow. They found that drops with low viscosity ratios (0.1) eventually concentrate at the
channel axis. At high viscosity ratios (1), however, the concentration peak moved to a
position between the wall and the centreline. For studies of the motion of large drops
in a tube see Couillette & Pozrikidis (1998) and the review article by Olbright (1996).

The effect of inertia on the motion of particles in a Poiseuille flow was studied
experimentally by Segre & Silberberg (1962a, b) who performed experiments with a
dilute suspension of neutrally buoyant solid particles for a wide range of Reynolds
numbers and particle sizes. They observed that solid particles migrate away from
both the tube axis and the wall, forming a concentrated layer at about half the
distance between the axis and the wall. This effect was further investigated by Karnis,
Goldsmith & Mason (1963, 1966a, b) using spherical particles and drops. They found
that deformable drops migrate to the tube axis if their viscosity is low (similar to the
creeping flow limit), but behave like solid particles at high viscosity ratios and settle
down at a distance halfway between the channel wall and the centreline. Experimental
studies of solid spheres in a channel have also been conducted by Oliver (1962), Jeffrey
& Pearson (1965), and Tachibana (1973), confirming the results of Segre & Silberberg
(1962a, b).

Theoretical investigations of the lateral migration of drops in Poiseuille flow have
addressed the effects of deformation and inertia separately. Theories for the lateral
migration of deformable drops are restricted to the Stokes flow limit. Chan & Leal
(1979) examined a nearly spherical drop that is small compared to the channel width,
and obtained a closed-form solution for the cross-stream migration velocity in a
linear shear flow and in two-dimensional Poiseuille flow assuming that λ < 1/Ca,
where λ = µi/µo is the viscosity ratio and Ca is the capillary number. The deformed
shape of the drop was predicted as a function of the governing parameters. For values
of λ between 0.5 and 10, the drop migrated to the walls, but for λ < 0.5 and λ > 10
it moved to the centreline. The predicted axial velocity of the drop always lagged
behind the undisturbed flow in Poiseuille flow.

Theoretical studies of the effect of inertia have been limited to spherical particles.
Ho & Leal (1974) obtained the equilibrium position and the trajectory of a small,
neutrally buoyant sphere in a linear shear flow, as well as in Poiseuille flow, using
a regular perturbation expansion for small particle Reynolds number. They derived
a closed-form solution for the lateral force and concluded that a neutrally buoyant
sphere in Poiseuille flow migrates to an equilibrium position given by Zeq = 0.2H ,
where H is the channel height and Z is the distance from the wall. Their results are in
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good agreement with the experimental observations of Segre & Silberberg (1962a, b)
and Tachibana (1973). Additional analytical studies have been reported by Vasseur
& Cox (1976) and Cox & Hsu (1977) who obtained an equilibrium position that was
slightly closer to the wall than that predicted by Ho & Leal. Particles close to the
wall also had a different migration velocity.

More recently, Schonberg & Hinch (1989) used a singular perturbation method
similar to the one used by Saffman (1965) to study the lateral migration of a
rigid particle in Poiseuille flow at higher Reynolds numbers, addressing the effect
of the Reynolds number. Unlike Cox & Brenner (1968), Ho & Leal (1973), and
Vassuer & Cox (1976), they included an outer region where inertial effects are
comparable to viscous effects. The particle size, however, was still assumed to be
small compared to the channel dimension. Schonberg & Hinch did not observe any
change in the equilibrium position of the particle with Reynolds number for Reb < 15,
and their results were essentially identical to those of Vasseur & Cox (1976) in this
range. However, the equilibrium distance from the wall was found to change from
Z = 0.185H at low Reynolds numbers, to Z = 0.16H at a Reynolds number of 75.
Agreement with the experimental results of Segre & Silberberg (1962a, b) worsens as
the Reynolds number is raised. A review on the motion of solid spheres in shear
flows was given by Feuillebois (1989).

Recently, the migration of deformable drops in shear flow at zero Reynolds number
was studied by numerical simulation using boundary-integral methods. The two-
dimensional simulation of a few droplets performed by Zhou & Pozrikidis (1993a, b)
for Couette flow, and by Zhou & Pozrikidis (1994) for Poiseuille flow, showed that
deformable drops migrate away from the walls. Zhou & Pozrikidis (1994) found that
drops having the same viscosity as the surrounding fluid migrate toward the centreline
of the channel. Simulations of a single drop with a viscosity ratio of 10 showed that if
it is initially close to the centreline, it moves to the wall; whereas if it is initially close
to the wall, it migrates toward the centreline. This result suggested that deformable
drops could move to an equilibrium position at about halfway between the wall and
the centreline, for this viscosity ratio. Three-dimensional simulations of a single drop
close to a plane wall in simple shear flow done by Kennedy, Pozrikidis & Skalak
(1994) also showed that drops always migrate away from the wall for a wide range of
viscosity ratios and capillary numbers. Other studies of the motion of a single drop
at zero Reynolds number were conducted by Martinez & Udell (1990), and Khayat,
Luciani & Utracki (1997), for example. In these papers, however, axial symmetry is
assumed, and the drops stay on the centreline at all times. Fully three-dimensional
drops in a circular tube were simulated by Couillette & Pozrikidis (1998) using a
boundary-integral method and Bozzi et al. (1997) have simulated axisymmetric drops
at finite Reynolds numbers.

Feng, Hu & Joseph (1994a, b) conducted two-dimensional simulations of solid
particles in a Poiseuille flow at finite Reynolds numbers using a finite element method
with a locally adaptive moving mesh. Their results were in good agreement with the
perturbation theory of Ho & Leal (1974) and the experiments of Segre & Silberberg
(1962a, b), although the equilibrium position predicted by their simulations was closer
to the channel axis.

In this paper, the migration of a neutrally buoyant deformable drop at finite
Reynolds numbers is studied by numerical simulation. The present study is similar to
that by Feng et al. (1994a, b), except that the particles are deformable, and that a few
three-dimensional simulations are included. The dependence of the drop migration
on deformation, viscosity ratio, and Reynolds number are examined.
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2. Governing equations and dimensionless parameters
The unsteady motion of a Newtonian drop in a Newtonian fluid is governed by

the Navier–Stokes equations. A single vector equation can be written for the whole
flow field by allowing the density and viscosity to vary discontinuously, and by
including surface tension as a generalized body force concentrated at the interface.
The ‘one-field’ equation is

∂ρu

∂t
+ ∇ · (ρuu) = −∇p+ ∇ · µ(∇u+ ∇uT )−

∫
σκnδ(x− X (s, t)) ds. (1)

Here, u, p, ρ, µ and σ are the velocity, pressure, density, viscosity and interfacial
tension, respectively; κ is twice the mean curvature for three-dimensional flow, and the
curvature for two-dimensional flow; n is the outward unit normal to the drop surface,
and X (s, t) is a Lagrangian representation of the interface; δ is the two- or three-
dimensional delta function; and the line or surface integral is over the interface. The
fluids are assumed to be incompressible and immiscible, and the material properties
are constant:

Dρ

Dt
= 0 (2)

Dµ

Dt
= 0. (3)

Incompressibility requires a solenoidal velocity field,

∇ · u = 0. (4)

The geometry of the flow domain is shown in figure 1. The computational domain
is periodic in the x-direction and bounded by no-slip walls in the z-direction. In three-
dimensional flow, the domain is also periodic in the y-direction. The flow through
the channel is driven by a constant pressure gradient. In the problem formulation, we
write

∇p = ∇Po + ∇p′ (5)

where ∇Po is the externally specified pressure gradient and ∇p′ is the perturbation
pressure gradient to be computed as part of the solution. The velocity is initially set
equal to the parabolic velocity profile corresponding to the imposed constant pressure
gradient if there are no drops in the channel. A drop of undeformed radius a is
then placed into the flow without affecting the velocity. Intially, the drop is therefore
deformed by the parabolic velocity profile. However, surface tension quickly limits
the deformation and the fluid velocity is modified due to the presence of the drop.
Since the pressure gradient is specified, the flow rate generally changes as the solution
evolves.

In all the simulations presented here, gravity is neglected. Therefore, buoyancy
effects are absent, even when the drops are denser than the suspending fluid. The
governing non-dimensional numbers are the Reynolds number Re, the Weber number
We, the ratio of the viscosity of the drop fluid to the suspending medium λ = µi/µo,
the density ratio α = ρi/ρo, and the ratio of the radius of the undeformed drop to the
height of the channel ζ = a/H . The viscosity and density of the drop liquid are denoted
by µi and ρi, respectively, and the suspending fluid has viscosity µo and density ρo. The
channel is a rectangle with height H , in two dimensions, and a rectangular box with
a small thickness in three dimensions. Most of the two-dimensional simulations use
a square domain. In the literature, the Reynolds number has been defined in various
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Figure 1. The geometry for the simulation of a drop in a rectangular channel. A drop of radius a
with density and viscosity ρi and µi is suspended in a Newtonian fluid with density and viscosity ρo
and µo. A constant pressure gradient drives the flow.

ways, depending on the chosen reference velocity and length. The channel Reynolds
number is defined in terms of the undisturbed channel centreline velocity Uc, and
the channel height, as Reb = ρoUcH/µo. A characteristic velocity can also be defined
based on the average velocity difference across the particle, Uca/H , giving the particle
Reynolds number Rep = ρoUca

2/(µoH). A Reynolds number based on the centreline
velocity and the drop diameter (d) is defined by Red = ρoUcd/µo. These Reynolds
numbers are related by Rep = Red(a/(2H)), and Reb = Red(H/d). A Weber number
is defined by the centreline velocity and the drop diameter: We = ρoU

2
c d/σ. In the

small inertia limit where viscous stresses are dominant, the proper non-dimensional
number for the interfacial tension is the capillary number, which expresses the ratio
of viscous stress to the interfacial tension, Ca = Ucµo/σ. Bentley & Leal (1986) and
Stone & Leal (1989), examined the bursting of drops in a linear shear flow, and
defined the capillary number based on the shear velocity Ca = Gaµ/σ where G is the
shear rate. This results in lower numerical values than used here. Non-dimensional
time is defined by τ = tUc/H .

3. Numerical method
The motion of the drops is simulated using the finite difference/front tracking

method developed by Unverdi & Tryggvason (1992a, b). The Navier–Stokes equations
are solved by a second-order projection method using centred differences on a fixed,
staggered grid. To keep the boundary between the drop and the ambient fluid
sharp, and to accurately compute the surface tension, the boundary is represented
by connected marker points (the ‘front’) that are advected by the flow velocity,
interpolated from the fixed grid. If the front is stretched by the flow, the marker
points move apart and the front resolution suffers. To maintain the resolution, new
marker points are inserted when the distance between points becomes too large.
Points are also deleted if the distance becomes smaller than a prescribed value. The
singularities at the front (density and viscosity gradients and surface tension) are
approximated on the fixed grid by smooth functions with a compact support. The
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Figure 2. Effect of the resolution on the lateral migration of a drop in a plane Poiseuille flow at
Red = 10, α = γ = 8, We = 0.5 and ζ = 0.125. The streamlines are plotted at the top, and the drop
axial velocity and lateral position are plotted versus the axial location for two resolutions at the
bottom.

density and viscosity fields are reconstructed at each time step by integrating the
smooth grid delta function, after the front has been moved, and the body force due to
surface tension is added to the nodal values of the discrete Navier–Stokes equations.
The elliptic pressure equation is solved by a multigrid method (Adams 1989) when the
density of the drop is different from the suspending fluid, and by a fast Poisson solver
(fishpack) when the densities are equal. For a detailed description of the method
and various validation tests, see Unverdi & Tryggvason (1992a, b) and Tryggvason
et al. (1998a, b).

4. Results
4.1. Resolution tests

To determine how well the flow field needs to be resolved, and to ensure grid
independence of the solution, resolution tests were done for several Reynolds numbers.
As expected, we find that as the Reynolds number increases, finer grids are required
and the drop needs more time to reach an equilibrium position.

Figure 2 shows the streamlines, the trajectory, and the axial velocity for a two-
dimensional drop at Reynolds number Red = 10 at two different grid resolutions with
642 or 1282 grid points, corresponding to 16 or 32 grid points per drop diameter for
the low or high resolution, respectively. The flow parameters are: We = 0.5, α = λ = 8,
and ζ = 0.125. The drop is initially released close to the upper wall. The streamlines
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Figure 3. Resolution test at different Reynolds numbers. Here, γ = 8, except for the bottom frames
where γ = 2. The solid and the dotted lines show results at 128× 128 and 256× 256 grid resolution,
respectively. Other flow parameters are: α = 8 and We = 0.5. The Reynolds number is based on the
centreline velocity and the drop diameter.

are shown at the same time for both resolutions, after the drop has reached an
equilibrium lateral position. The high-resolution drop moves a little slower than the
low-resolution drop, but otherwise the results are in good agreement. The equilibrium
positions differ by about 0.6% of the channel height, and the difference between the
axial velocities is around 0.4% of the centreline velocity.

Figure 3 presents additional tests at higher Reynolds numbers, and at a different
viscosity ratio with grid sizes 1282 and 2562. The latter results in 64 grid points per
drop diameter. The lateral position of the drops is plotted versus time, and the axial
velocity is plotted versus the axial location for Reynolds numbers of Red = 25 and
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(a) (b)

Figure 4. Streamlines for a drop at Red = 0.25, Ca = 0.25, α = 1, and ζ = 0.125. The viscosity
ratio is γ = 0.125 for (a) and 1.0 for (b). The calculations were done using a 64× 64 grid.

37. Even though the Red = 25 drop is released at a distance from the wall that is close
to the equilibrium distance where it eventually will settle down, its path oscillates and
the drop moves about 40 times the channel height before reaching steady state. As
we found for the low-Reynolds-number case, the well-resolved drop lags behind the
drop with the low resolution (0.7% of the axial velocity) and reaches an equilibrium
position that is closer to the wall (0.6%). As the Reynolds number increases, the
difference between the high-resolution and the 1282 calculations increases and the
transient oscillations observed in a 2562 computation are damped. The accuracy of
the computations was also examined for a lower viscosity ratio of λ = 2 and a
Reynolds number equal to Red = 37 (see the bottom frames of figure 3). The periodic
oscillations observed in this case reach a larger amplitude for the 2562 grid, and
the drop on the 1282 grid is out of phase with the drop on the 2562 grid. Because
of the phase difference, a comparison of the flow at the same time results in large
differences. If the comparison is done when the drops are at the same lateral positions,
however, the flow patterns are similar. A calculation using a 2562 grid takes about
9 CPU seconds for each time step on an UltraSPARC 170E SUN workstation for
Red = 37. The total number of time steps required for the computation is about
439 000, resulting in a total of 3 951 000 CPU seconds.

4.2. Lateral migration of a liquid drop in the small inertia limit

We start by studying the motion of a deformable drop in two-dimensional Poiseuille
flow by a series of simulations in the limit of small inertia. Since the flow is dominated
by viscous effects, the proper non-dimensional number is the capillary number,
expressing the ratio of viscous stress to surface tension. The theory of Chan & Leal
(1979) is limited to small deformation and small drops, but the simulations allow
arbitrary deformation and finite drop sizes. It is possible to select parameters where
the limitations of the theory are approximately satisfied, but exact agreement cannot
be expected since our simulations in this section are for two-dimensional drops.

To investigate the dependence of the migration on the viscosity ratio, we conduct
simulations at λ = 0.125 and λ = 1. The relative size of the drop is ζ = 0.125, and
two different Reynolds numbers are considered, Red = 0.25 and 1.0.

We first consider the lower Reynolds number case. The calculations are done on a
642 grid. The capillary number is Ca = 0.25, so the deformation of the drop is small,
and the density ratio is α = 1. Figure 4 shows the drop contours and the streamline
patterns for two drops with viscosity ratios λ = 0.125 and λ = 1 at time t = 36.9.
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Figure 5. The lateral position of the drops in figure 4, measured from the lower wall,
versus the axial location.

The centre of the recirculation pattern inside the high-viscosity drop is close to the
centre of the drop, but the centre of recirculation of the low-viscosity drop is close
to the wall. The lateral positions of the drops are plotted versus the axial location in
figure 5. The low-viscosity drop migrates toward the centreline, and the high-viscosity
drop migrates away from the centreline, in agreement with the predictions of Chan
& Leal, even though the relative size of the drop is not small. The lateral migration
is, however, very weak, and it would take a long time for the drop to move to an
equilibrium position.

Since we use explicit time-stepping, simulations at a very low Reynolds number
require very small time steps for stability. We have therefore increased the Reynolds
number to Red = 1 to reach an equilibrium position using less computer time.
The computations are done on a 1282 grid. Figures 6 and 7 show results of four
simulations: two with Ca = 1 and a viscosity ratio of (a) λ = 1, and (b) λ = 0.125;
and two for Ca = 2 and λ = 0.125, but different density ratios (α = 0.125 in (c),
α = 1 in (d)). Since Ca is higher here than for the drops in figure 4, the drops deform
more. Figure 6 shows the lateral position measured from the lower wall and the
axial velocity of the drop versus the axial location. The initial positions of drops (a),
(b) and (d) are the same; drop (c) is released closer to the wall. The low-viscosity
drop in (b) migrates toward the centre of the channel, but the high-viscosity drop (a)
migrates toward the wall. These results are again in agreement with the theoretical
predictions of Chan & Leal for the viscosity dependence of the migration in the
limit of small deformation. The drop that migrates to the wall reaches an equilibrium
position at Zeq/H = 0.37. The equilibrium position is not predicted by the theory
since the effect of the wall is not included. Although an equilibrium position halfway
between the centreline and the walls is seen at higher Reynolds numbers due to
the Segre–Silberberg effect (§ 4.3), the present result is almost certainly due to the
interplay of deformation and viscosity, since the drop moves to the centreline when
its viscosity is decreased. This effect was also seen in the Stokes flow simulations of
Zhou & Pozrikidis (1994) for λ = 10. Figure 7 shows drop contours and streamlines
for cases (a) and (d) at times 56.8 and 55.6, respectively, when the drops have moved
downstream approximately 50 times the height of the channel. The shape of drop
(d) (as well as drop (c), not shown) agrees qualitatively with the predicted shape of
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Figure 6. Lateral position and axial velocity versus the axial position for several drops with
Red = 1 and different viscosity and density ratios.

Chan & Leal for a deformed drop moving at the channel centreline. However, the
deformation is larger here since the relative size of the drop is larger.

The effect of deformation on the migration of the drop can be investigated by
considering drops (b) and (d) in figure 6, which have different capillary numbers but
the other parameters the same. The more deformable drop (d) migrates faster to the
centre of the channel. Drops at a low-viscosity ratio, but with different density ratios
(α = 0.125 and α = 1) both migrate to the centre of the channel (c and d) at about
the same rate, confirming that the density ratio does not play a significant role in the
drop migration when flow inertia is small.

The axial velocities of the drops are plotted versus the axial location in figure 6. As
predicted by Chan & Leal, the drop always lags behind the undisturbed flow. Drops
with a higher capillary number move slightly faster than drops with a lower capillary
number, but the slip velocity is small in both cases.

Experimental investigations of the motion of a single drop in pressure-driven
channel flow (see e.g. Karnis & Mason 1967; Goldsmith & Mason 1961, 1962) have
shown that the drop moves away from the channel wall. For low viscosity ratios the
drops reach the centre of the channel. This is in agreement with the theory of Chan
& Leal and the simulations presented here. Hiller & Kowalewski (1987) conducted
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(a) (b)

Figure 7. Streamlines for a drop at Red = 1, α = 1, and ζ = 0.125, (a) γ = 1, We = 1 and Ca = 1,
(b) γ = 0.125, We = 2 and Ca = 2 (corresponding to drops (a) and (d) in figure 6). Notice that the
streamlines are not equally spaced in frame (b).

experiments on a dilute suspension of drops with different viscosity ratios and found
that for low-viscosity drops (λ = 0.1), the drop number density is eventually highest at
the centreline, but for moderate viscosity ratios (λ = 1), the highest concentration was
located between the wall and the centre. This is, again, in agreement with the results
found here and with the theory of Chan & Leal. Although the present simulations are
only two-dimensional and therefore not completely comparable with the predictions
of Chan & Leal and with the experimental results, we will show in § 4.4 that many
aspect of the three-dimensional evolution of drops in a channel are well predicted by
two-dimensional simulations.

To examine the effect of the drop size, we have done simulations with larger drops.
Larger drops disturb the flow more, and we have therefore used a rectangular channel
that is three times longer than its height for these simulations. Figure 8(a) shows the
lateral position of four drops at small Reynolds numbers plotted against time. For
drops (e), (f), (g), ζ = 0.375 and for drop (h), ζ = 0.4375. The density ratio is unity for
all drops. To examine the significance of inertia, the Reynolds number was reduced by
a factor of four from drop (e) where Reb = 4 to Reb = 1 for drop (f). The results are
essentially identical, suggesting that inertia effect is neglible. The effect of the viscosity
ratio can be seen by comparing the motion of drop (f) where λ = 1, to drop (g) where
λ = 0.125. Unlike small drops, both large drops migrate to the centreline. The largest
drop (h) migrates faster to the middle of the channel. The capillary number for this
drop is smaller, but the capillary number based on the shear velocity (Uca/H) is the
same for all drops. Figure 8(b) shows the streamlines at steady state for drop (h).
The streamlines show that the region behind the drop is composed of two circulation
zones that are symmetric with respect to the axial direction. The drop is stretched
in the axial direction and has a sharp leading edge and a flattened trailing edge.
The shape of drop (h) is in qualitative agreement with those seen in the experiments
performed by Olbricht & Kung (1992) in the limit of creeping flow. The flow rate
through the channel, expressed by the ratio of the actual flow rate in the presence
of the drop to the undisturbed flow rate (Qd/Qo) is the same for drops (e) and (f),
Qd/Qo = 0.95. However, the flow rate increases for drop (g), Qd/Qo = 1.02. This is
consistent with the theoretical predictions of Brenner and Bungay (see Olbricht 1996)
who showed that the extra pressure drop for constant flow rate due to the presence
of the drop is a function of the viscosity ratio and the drop size. The theory, in
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Figure 8. (a) The lateral position versus time for large drops at small Reynolds numbers, and (b)
the streamlines at steady state for drop (h). The density ratio is α = 1 for all cases. The viscosity
ratio is also γ = 1 for all cases except for drop (g) where γ = 0.125. The non-dimensional size of
the drop is ζ = 0.375 for drops (e), (f), (g), and 0.4375 for drop (h).

particular, shows that the extra pressure drop can be negative for large drops and
small viscosity ratios.

4.3. Lateral migration of a liquid drop at moderate Reynolds numbers

In this subsection, our study of the motion of a liquid drop is extended to higher
Reynolds numbers, and the effects of the various governing parameters are examined
in detail.

4.3.1. Effect of drop deformation

For drops in Stokes flow, deformation is the only means of lateral migration. To
illustrate the role of deformation for non-zero Reynolds numbers, in figure 9(a) we
show the equilibrium shapes and positions of three drops with We = 0.5, 4, and 16, all
for Red = 10, α = λ = 8, and ζ = 0.125. The particle Reynolds number and the channel
Reynolds number are Rep = 0.625 and Reb = 40.0. As the Weber number is increased,
the drops are more deformed. The streamlines at steady state are shown in figure
9(b) for the most deformed drop (We = 16). Those should be compared with figure
2, where streamlines are shown for We = 0.5. The flow patterns are similar, but while
the major axis of the We = 4 drop is oriented at about 45◦ with respect to the channel
wall, the major axis of the We = 16 drop is aligned more with the flow direction.

The lateral position of the drop is plotted versus the axial location in figure 10(a).
The equilibrium distance from the upper wall is Zeq/H = 0.28 for the nearly circular
drop, which is somewhat higher than the value predicted by the perturbation theories
of Ho & Leal (1974), Vasseur & Cox (1976), and Schonberg & Hinch (1989) (0.2,
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Figure 9. (a) Equilibrium position and shapes of drops at Red = 10, α = γ = 8, at different Weber
numbers. The initial position is the same for all drops. (b) Streamlines for the We = 16 drop.
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Figure 10. (a) The lateral position and (b) slip velocity, versus the axial position, for the drops
shown in figure 9(a).

0.19 and 0.185, respectively) in the limit of a small particle and small Reynolds
number. However, our result is close to that of the two-dimensional simulations of
Feng et al. (1994b), who found Zeq/H = 0.252 for neutrally buoyant solid particles.
Ho & Leal (1974) and Feng et al. (1994b) both discussed the mechanism determining
the equilibrium position. The flow through the gap between the particle and the
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wall results in a repulsive lubrication force, called ‘geometric blocking’ by Feng
et al. (1994b), that increases with the particle size. However, the particle always has a
negative slip velocity and lags behind the undisturbed flow. The negative slip velocity
and the curvature of the velocity profile generate a force that drives the particle away
from the centre of the channel. Since the deformed drop is thinner, the difference in
flow velocity across the drop is smaller than for a spherical drop. The force pushing it
to the wall is therefore smaller and the equilibrium position is closer to the centreline.
This effect, however, is small. The ‘slip’ velocities, defined as the axial velocity of
the drop minus the undisturbed fluid velocity at the drop centroid, are plotted in
figure 10(b). The drops always lag behind the undisturbed flow in agreement with the
theoretical predictions of Chan & Leal (1979) for creeping flow and the numerical
simulations of Feng et al. (1994a, b) for rigid particles at moderate Reynolds numbers.
The slip velocity is smallest for the most deformable drop (We = 16) since it exhibits
the least resistance to the flow. The reduced slip velocity, as well as the slight change
in the equilibrium position, causes the deformed drop to move considerably faster
down the channel than the undeformed drop.

Experiments focusing on the effect of deformability have all been done at much
smaller Reynolds numbers than the ones considered here. In the studies of Goldsmith
& Mason (1962) and Karnis & Mason (1967), where the Reynolds number was
essentially zero (Rep = 10−6), the drops were found to move toward the centreline.
At a higher Reynolds number (but still much smaller than unity, Rep = 0.0004 to
0.007), Karnis et al. (1963) found that drops with viscosity ten times the suspending
fluid viscosity move to the centreline whereas more viscous drops (λ = 50) move
to a position halfway between the centre and the wall, in agreement with results
found for solid particles. Karnis et al. argued that the increased viscosity leads to
smaller deformation and that the different behaviour was the result of the increased
deformability. Since drops can migrate in zero Reynolds number flows only if they
deform, it is likely that the final position of a deformable drop at non-zero Reynolds
numbers is the result of competition between deformability and inertia. At the
Reynolds numbers examined here, inertial effects are dominant and the equilibrium
position is determined by the Segre–Silberberg effect.

4.3.2. Effect of the Reynolds number

To examine the effect of the Reynolds number, in figure 11 we plot the lateral
position of the drop versus the axial location for Reynolds numbers Red = 5, 10, 25, 37,
and 50, for We = 0.5, α = λ = 8, and ζ = 0.125. At low Reynolds numbers the
drops approach the equilibrium position monotonically. As the Reynolds number is
increased, the drops overshoot the equilibrium position and oscillate several times
before settling down. The equilibrium position also moves slightly closer to the wall.
The amplitude of the oscillations increases with the Reynolds number and the rate
of decay decreases. At Red = 25, the oscillations have not died out after the drop has
moved more than 90 channel heights downstream. The low Reynolds number results
are in agreement with the perturbation theory of Schonberg & Hinch (1989), who
found that the equilibrium position of rigid spheres moves closer to the walls as the
Reynolds number increases: As the Reynolds number is increased, viscous effects are
reduced, the lubrication forces between the wall and the drop are also reduced, so the
drop moves closer to the wall.

Indirect experimental evidence suggests that drops oscillate at high Reynolds num-
bers. Segre & Silberberg (1962b) conducted experiments using a multi-particle system
with nearly neutrally buoyant solid spheres and relatively low volume fractions. They
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Figure 11. The lateral position versus the axial location of a drop with α = γ = 8, We = 0.5,
ζ = 0.125 and five different Reynolds numbers. The Reynolds number is based on the centreline
velocity and the drop diameter.

observed that concentrated layers of particles, found around the equilibrium posi-
tion at low Reynolds numbers, became blurry and their thickness increased as the
Reynolds number increased. This could be due to unsteady motion of the particles.
The width of the particle-free layer adjacent to the wall also decreased and the rate
at which the concentration of particles decayed from the centreline to the equilibrium
position was reduced. At very high channel Reynolds numbers (Reb = 346–1388), the
layer is completely smeared out.

4.3.3. Effect of the viscosity ratio

In experiments, where the behaviour of drops of different fluids is examined, the
ratio of the drop viscosity to the viscosity of the suspending fluid is the most important
quantity that is changed (assuming that the size of the drops and the pressure gradient
remains constant). In this section, we examine the effect of the viscosity ratio for a
small deformation (We = 0.5) and moderate Reynolds numbers. The effect of the
viscosity ratio for very small Reynolds numbers was examined in § 4.2.

In figure 12, the lateral velocity of a single drop is plotted versus its lateral
position for two viscosity ratios (λ = 2 and 8) and four different Reynolds numbers
(Red = 10, 25, 37, and 50). For Red = 10, (a), the drops move nearly monotonically
to the equilibrium position, and the low-viscosity drop ends up closer to the wall. As
the Reynolds number is increased to Red = 25, (b), both drops significantly overshoot
the equilibrium position, and the low-viscosity drop continues to oscillate even after
it has moved downstream over 60 channel heights. The motion of the viscous drop,
on the other hand, is damped more quickly. Although the low-viscosity drop has not
completely settled down, it is clear that its equilibrium position will be slightly closer
to the wall than that of the more viscous drop, as in the case of Red = 10. In (c)
the Reynolds number has been increased to 37 and the amplitude of the oscillation
is larger than in (a) and (b). While the oscillations of the λ = 8 drop are eventually
damped, the oscillations of the low-viscosity drop (λ = 2) are not. For Red = 50
(d), the oscillations of the more-viscous drop are damped and it moves slowly to an
equilibrium position. The less-viscous drop not only fails to reach a steady state, but
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Figure 13. The w-velocity versus the z-coordinate of two drops with different initial positions with
Red = 37, α = 8, γ = 1, We = 0.5, and ζ = 0.125. Calculations were done on a 256× 256 grid.

actually has moved over to the other side of the channel by the time the simulation
was terminated.

To examine the behaviour at even lower viscosity, we repeated the simulation for
Red = 37 with λ = 1. Figure 13 shows the lateral velocity versus the lateral position
for two drops with different initial positions. The drop initially located closer to the
centreline immediately moves to the closest wall, bounces back across the centreline,
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Figure 14. Effect of the density ratio on the equilibrium position of a drop at Red = 37, We = 0.5,
and γ = 1. Calculations are done on a 256× 256 grid.

slows down to nearly zero velocity at about halfway between the wall and the
centreline, and is then thrown to the other side to repeat the motion. The other drop,
initially located close to the wall, first moves to a position about halfway between the
wall and the centreline, but is then pushed to the wall and follows the same path as
the first drop.

The reason why the equilibrium position of the low-viscosity drops is closer to
the wall can be explained as follows: A high drop viscosity slows down the ambient
flow on the side of the drop facing the wall, thereby increasing the viscous blocking
(lubrication force) of the flow between the wall and the drop, and causing the
equilibrium position to move further away from the wall. The same effect is seen for
solid particles where a freely rotating sphere is found to be closer to the wall than a
sphere that is prevented from rotating (Feuillebois 1989). The oscillatory motion seen
for low-viscosity drops at high Reynolds numbers is likely to be due to the reduced
dissipation.

Our results differ from those of Karnis et al. (1966a, b) who found that drops with
very low-viscosity ratios move to the axis of the channel. However, their Reynolds
number was very low (typically much smaller than unity) and we have found (§ 4.3.1)
that increased deformability does not change the equilibrium position of the drop
significantly in the Reynolds number range considered in this section. We therefore
believe that the main reason for the different behaviours is the difference in the
Reynolds number. At low Reynolds numbers (less than unity), deformation can drive
the drops to the centreline, but at higher Reynolds numbers (Red = 10), inertia moves
the drop to an equilibrium position at about halfway between the centreline and the
wall.

The computations presented in this section were carried out using 1282 and 2562

grids and some of the runs have been repeated with drops starting from different
initial conditions. The results shown in figure 12 remain essentially unchanged.

4.3.4. Effect of the density ratio

The effect of the density ratio on the lateral migration of a drop was examined by
carrying out four simulations with α = 0.5, 1.0, 2.0, and 4.0, all for Red = 37, We = 0.5
and λ = 1. Figure 14 shows the lateral position versus the axial location of the centre
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Figure 15. Comparison between the effect of the viscosity and the density ratio on the equilibrium
position of a drop. The flow conditions are: Red = 37 and We = 0.5.

of the drop. The transient motion of the drop is strongly affected by the density ratio.
The low-density drops approach an equilibrium position monotonically, whereas the
heavier drops overshoot; the heaviest drop (α = 4) undergoes several slowly decaying
oscillations. To confirm that the oscillations are indeed damped, this simulation was
carried out for a much longer time. For the smaller density ratios, it is clear that
the equilibrium position of the heavier drops is slightly closer to the wall. We note
that increasing the density of the drop has the same effect as decreasing the viscosity
of the drop, and this suggests that it is the high Reynolds number of the drop that
promotes oscillatory motion. However, changes in the viscosity ratio have stronger
effects, as shown in figure 15, where the lateral position of the drop versus distance
travelled down the channel is plotted for two density ratios and two viscosity ratios.

4.3.5. Effect of the drop size

The effect of the size of the drop is shown in figure 16, where the lateral position of
the drop is plotted versus the axial position for seven drops with different sizes. The
flow parameters are: Reb = 40, We = 0.5, α = γ = 1, and ζ = 0.09, 0.1875, 0.281, 0.375,
and 0.4375 for drops 1, 2, 3, 4 and 5, respectively. The Weber number is higher for
drop 6, We = 4, and the Reynolds number is smaller for drop 7, Reb = 13.3. Other
parameters for drops 6 and 7 are the same as for drop 4. To reduce the effect of the
periodic boundary condition, the length of the computational domain was increased
to three times the channel height in these simulations. For large drops, the periodic
length can have a significant effect, but as will be shown in § 4.3.6, the effect is small for
small drops. The domain was resolved by a 384 × 128 grid. The steady-state shapes
and positions of drops 1, 2, 3, 4 and 5 are also shown in figure 16. Since the Weber
number is low, the drops remain nearly circular. As the drops get larger, the velocity
difference across the drop increases and therefore also the force pushing the drops
to the wall. The gap between the drop and the wall therefore decreases. However,
since the radius of the drop is increasing, the centroid of the drop moves away from
the wall. When the drop diameter is comparable to the channel height (drop 5), the
equilibrium position moves to the channel centreline. Reducing the Reynolds number
for drop 4 (drop 7) moves the equilibrium position closer to the centreline, but not
all the way. Making drop 4 more deformable (drop 6) results in an equilibrium
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Figure 16. Effect of the drop size on the lateral migration of a drop in a plane Poiseuille flow.
The flow conditions for drops 1, 2, 3, 4, and 5 are: Reb = 40, α = γ = 1, and We = 0.5. Drop 6
has a higher Weber number (We = 4), and the Reynolds number is lower for drop 7 (Reb = 13.3).
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Figure 17. Streamlines at steady state for drop 5 in figure 16.

position exactly on the centreline. This strong dependance of the equilibrium position
on the Weber and Reynolds number was not seen for smaller drops at high enough
Reynolds numbers. However, for very low Reynolds numbers large deformable drops
move to the centreline. Large drops with a diameter comparable to the channel height
therefore always migrate to the channel centreline at small and moderate Reynolds
numbers. The streamlines for drop 5 are plotted in figure 17. The streamlines show a
nearly symmetric pattern with respect to the centreline at steady state.

The results are in agreement with the experiments of Karnis et al. (1966b) who
examined the equilibrium position of particles of different sizes in a pipe at relatively
low Reynolds numbers and found the equilibrium positions Zeq/H = 0.23, 0.33, 0.36,
and 0.43 for rigid spheres with ζ = 0.0775, 0.2, 0.2625, and 0.389, respectively. For
liquid drops with viscosity ratio of λ = 50, where the drops behaved like solid spheres,
the equilibrium position was Zeq/H = 0.235 and 0.25 for drops of size ζ = 0.04625
and 0.06, respectively. Comparison between our results and the experimental data
is shown in figure 18. Our results are for nearly circular drops, but the viscosity
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the open triangles are for two-dimensional simulations at Red = 10, α = γ = 8, and We = 0.5 in a
square channel; the three-dimensional simulation is at Red = 10, α = γ = 8, and We = 0.5.

ratios (λ = 1 and 8) are lower than in the experiments. This figure also shows the
experimental data of Oliver (1962) for rigid spheres at a relatively high Reynolds
number (Reb =100 to 500). Although the agreement is reasonably good, we note that
most of the numerical results are for two-dimensional drops whereas the experimental
results are for fully three-dimensional drops. The equilibrium position of one three-
dimensional drop, which is nearly identical to that of a two-dimensional drop, is also
shown in figure 18.

As the equilibrium position moves closer to the centre, the axial velocity of the
drops increases. Large particles are therefore advected faster than small particles for a
given pressure drop. We note that the equilibrium positions predicted by perturbation
theories, for drops that are much smaller than the channel width, are always closer
to the channel walls than what is predicted by the present simulations.

4.3.6. Effect of periodicity

To investigate the effect of the periodic boundary condition on the migration of a
drop, we repeated a few simulations using channels of different lengths (L). In figure
19, we present the lateral position versus the axial location of drops with two different
sizes: ζ = 0.125, and 0.375. The channels have three different sizes: L/H = 1, 2 and
3. Comparison between the equilibrium positions of the drop with ζ = 0.125 shows
that when the channel length is doubled from L/H = 1 to L/H = 2, the equilibrium
position changes by 1%. Increasing the channel length further has essentially no
effect. For the large drop, ζ = 0.375, the equilibrium position changes by 6% as the



A numerical study of the motion of drops in Poiseuille flow. Part 1 345

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50
0 10 20 30 40 50

x/H

z
H

Square

(2 by 1)

(3 by 1)

Square

(3 by 1)

Figure 19. Effect of the channel length on the lateral migration of a drop in a plane Poiseuille
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The flow conditions are: Reb = 40, α = γ = 1, We = 0.5.

channel is extended from L/H = 1 to L/H = 3. As a result, the effect of the periodic
boundary condition on the equilibrium position of a drop is small if the drop size is
small. The insensitivity of the results to the length of the period is in agreement with
Stokes flow predictions, which show that the disturbance due to a stokeslet between
parallel plates decays rapidly upstream and downstream (see, for example, Liron &
Shahar 1978, and references therein).

4.4. Simulations of three-dimensional flow

The results for two-dimensional flows presented in the previous sections were obtained
using relatively fine grids, and the simulations were carried out for a relatively
long physical time to obtain steady-state solutions. Three-dimensional simulations
of the same complexity require much longer computational time, and we have only
conducted a few three-dimensional simulations at a low Reynolds number using
relatively coarse grids. To make the conditions of the three-dimensional and the
two-dimensional simulations as similar as possible, and to reduce the computational
time, we use a domain that is relatively narrow in the y-direction (0.375H). The
grid resolution is 64 × 24 × 64 in the x-, y- and z-directions, respectively. In figure
20, the drop and steady-state streamlines in a plane through the centre of the drop
(y = 0.1875H) are shown for Red = 10, We = 0.5, α = λ = 8, and ζ = 0.125.

In figure 21, a comparison between the three-dimensional drop shown in figure 20
and a two-dimensional simulation with the same parameters is shown by plotting
the lateral position and the axial velocity of the drop versus the axial position. The
two-dimensional simulation was done using two resolutions to show the effect of
discretization. The grid resolution for the three-dimensional case and for the low-
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Figure 20. The drop and steady-state streamlines for three-dimensional simulation at Red = 10,
α = γ = 8, and We = 0.5.
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Figure 21. Comparison between two- and three-dimensional simulation of a drop at Red = 10,
We = 0.5, and α = γ = 8: (a) the lateral position of the drop and (b) the axial velocity versus the
axial position.

resolution two-dimensional calculation are the same. The equilibrium position of
the three-dimensional drop agrees well with the two-dimensional one at the lower
resolution, but the three-dimensional drop has a higher translational velocity. This
is likely to be due to the smaller disturbance of the flow field caused by the three-
dimensional drop, which leads to a lower drag compared to the two-dimensional
one.

The effect of the viscosity ratio is shown in figure 22, where the the lateral position
of a three-dimensional drop is plotted versus its axial location, for viscosity ratios of
λ = 2 and 8. As the viscosity ratio is reduced the three-dimensional drop migrates
to an equilibrium position closer to the wall, in agreement with the result for the
two-dimensional drops. This effect has already been discussed for two-dimensional
simulations in § 4.3.3.
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Figure 22. The effect of the viscosity ratio on the equilibrium position of a three-dimensional drop
with Red = 10, α = 8, and We = 0.5. The lateral position is plotted versus the axial position.

5. Conclusion
The motion of a single drop suspended in pressure-driven channel flow has been

examined by numerical simulations which account for the effects of inertia, viscosity,
and surface tension. Most of the simulations are confined to two-dimensional flow
but a few three-dimensional flows are also considered.

Two sets of computations have been presented. For the first set (§ 4.2), the Reynolds
number (Red) was O(1) or lower. The results showed that the motion of a drop depends
strongly on the ratio of the drop viscosity to the viscosity of the suspending fluid.
A drop with a small viscosity moves toward the centreline at a rate that increases
with the deformability of the drop, whereas a drop with viscosity comparable to the
suspending fluid moves away from the centreline. Those results are in agreement
with the theoretical predictions of Chan & Leal (1979) and computations of Zhou &
Pozrikidis (1994), who found that the direction of migration of a drop in a Poissuille
flow depends on the viscosity ratio. Drops with O(1) Reynolds numbers either move
to the channel centreline, or reach a steady-state position between the centreline and
the walls. The motion of the very low Reynolds number drop was not simulated for
a long enough time for it to reach a well-defined equilibrium position.

For the second set of simulations (§ 4.3), the channel Reynolds number was much
higher, Red = 5–50. In this range, small drops either settle to an equilibrium position
about halfway between the centreline of the channel and the wall, or they undergo
oscillatory motion. The exact position of the drops that settle down depends relatively
weakly on the various physical parameters. Increasing the channel Reynolds number
moves the equilibrium position slightly closer to the wall, whereas increasing the drop
viscosity or making the drops more deformable (by lowering the Weber number) has
the opposite effect. Increasing the drop density causes the equilibrium position to
move closer to the wall, but only by a small amount. Increasing the size of the drop
moves the equilibrium position closer to the centreline, although the gap between
the wall and the drop surface is reduced. For the cases studied here, the changes in
the equilibrium position are typically within a few percent. As the Reynolds number
or the drop density is increased, or the viscosity of the drop is decreased, the drop
first undergoes transient oscillations before reaching steady state. Once the Reynolds
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number and/or the density are high enough and/or the viscosity ratio is low enough,
the oscillations are not damped and the drops do not settle down. The oscillations
consists either of motion around the equilibrium position confined to one half of
the channel, or large-amplitude oscillations where the drop moves across the channel
centreline. In the latter case, the drop pauses slightly as it passes the mid-point between
the centreline and the wall, suggesting that this point is still an unstable equilibrium
point. Large drops, whose diameters are comparable to the channel height, always
move to the channel centreline, independent of the Reynolds number. Our results are
in good agreement with experimental observations, particularly for drops that reach
a steady-state lateral position (the Segre–Silberberg effect). For higher Reynolds
numbers, however, the experimental data are not completely conclusive. Our two-
dimensional computations are also in good agreement with the numerical results of
Feng et al. (1994b), on the motion of a two-dimensional solid cylinder in a Poiseuille
flow.

The results for the two-dimensional drops have been supplemented by two simula-
tions of three-dimensional drops, but only for a modest Reynolds number, Red = 10,
and a small computational domain. The results showed that the equilibrium position
of the drops is close to the two-dimensional predictions, and that increasing the drop
viscosity moved it slightly closer to the centreline, in agreement with two-dimensional
predictions. We have, however, not confirmed the onset of oscillations at higher
Reynolds numbers by simulations of three-dimensional drops.

This work was supported by the National Science Foundation under grant CTS-
9503208 and by the National Aeronautics and Space Administration under contract
NAG3-2162. The computations were done on the computers at the Center for Parallel
Computing (CPC) at the University of Michigan. We would like to thank Dr Hal
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